“La ciencia nos hace seres más críticos y mejor informados y, por tanto, más libres”

Por: Salvador López Arnal

Entrevista a Daniel Farías y Juan Carlos Cuevas sobre Las ideas que cambiaron el mundo.

DANIEL FARÍAS (Buenos Aires, 1965) es físico experimental, formado en la Universidad de Buenos Aires y en la Universidad Libre de Berlín, donde se doctoró en 1996. Desde 2007 es profesor titular en la Universidad Autónoma de Madrid, donde investiga en diversos temas de Física de la Materia Condensada. Ha publicado más de 100 artículos en las revistas científicas más prestigiosas, incluidas Science Nature.

JUAN CARLOS CUEVAS (Medina del Campo, 1970), cursó sus estudios en Ciencias Físicas en la Universidad Autónoma de Madrid (UAM) donde se graduó en 1993 y se doctoró en 1999. Posteriormente, trabajó en el prestigioso Karlsruhe Institute of Technology (Alemania) durante siete años, donde dirigió su propio grupo de investigación. Desde 2007 es profesor titular en la UAM donde continúa su labor investigadora en diversos temas de Física de la Materia Condensada y Nanotecnología, en los que es un referente a nivel mundial. Ha publicado más de 120 artículos en las revistas científicas más prestigiosas, incluidas Science Nature.  

Nos habíamos quedado aquí. Les pido un comentario de texto sobre una frase a veces usada en la cultura popular o en los ámbitos de la filosofía y las ciencias sociales: “Como demostró Einstein, todo es relativo. Por lo tanto, el conocimiento es relativo, la verdad es relativa, la moral también, etc”.  

Es cierto que relatividad a veces se malinterpreta como sinónimo de relativismo y se cita a Einstein para negar la existencia de una verdad objetiva o de valores morales. Esto ya ocurría en los tiempos de Einstein, y llegó a molestarle tanto que sugirió el cambio de nombre de su teoría por el de “teoría de los invariantes”, un nombre poco atractivo que nunca cuajó.

Es completamente falso que la relatividad nos diga que todo es relativo. De hecho, hay muchas cosas absolutas en la teoría de la relatividad. La relatividad nos dice que las leyes de la física son las mismas para todos los observadores, que la velocidad de la luz es la misma para todos o que el concepto de espacio-tiempo también lo es. La relatividad también unificó conceptos como los de masa y energía o como el campo eléctrico y magnético. En definitiva, la relatividad nos habla de un montón de cuestiones absolutas y su verdadero poder reside en la capacidad de unificar conceptos que se creían independientes.

¿Se puede afirmar a día de hoy que la teoría de Einstein ha sido corroborada? ¿Cuáles serían los experimentos más decisivos que han jugado ese papel?  

La teoría de la relatividad es muy amplia y tiene muchas implicaciones, pero podemos afirmar que la mayor parte de sus predicciones han sido comprobadas experimentalmente. Por ejemplo, en el caso de la relatividad especial, esas predicciones son corroboradas a diario en millones de reacciones nucleares y de partículas que tienen lugar en reactores nucleares y aceleradores de partículas de todo el mundo. Con respecto a la relatividad general, la confirmación de las diversas predicciones ha ido llegando con cuenta gotas a lo largo de los últimos 100 años. Entre los experimentos más emblemáticos destacan: la medición de la desviación de la luz por acción de la gravedad (1919), la observación de la expansión del universo por Edwin Hubble (1929), la detección del corrimiento al rojo gravitacional (1960), la confirmación de la acción de la gravedad en la medición del tiempo (1971) o la existencia de ondas gravitacionales (2015).

Les pido casi un imposible: ¿pueden resumir en diez líneas, no más, lo esencial de la mecánica cuántica?  

La principal característica del mundo cuántico es la existencia de valores discretos para las propiedades físicas. Por ejemplo, si pensamos en el modelo planetario del átomo, los niveles de energía para un electrón son discretos, no continuos. Además, la cuántica es una teoría no-determinista, es decir, afirma que el estado actual de un sistema ya no determina el resultado de un evento; solo la probabilidad de que ocurra. Respecto a la nueva visión que nos da de la realidad externa, se puede resumir en estos dos puntos: 1. Las partículas cuánticas poseen propiedades indefinidas o borrosas mientras no se realiza una medición, es decir, adoptan propiedades bien definidas solo cuando son medidas. 2. En el mundo cuántico existe la acción a distancia instantánea, lo que se conoce como “no-localidad”. Esto es consecuencia del entrelazamiento, una propiedad cuántica que no tiene analogía en física clásica.  

Que no sea determinista, ¿implica que debemos abandonar el concepto de causalidad en este ámbito teórico?  

No, no realmente. Causalidad en el contexto de la física significa que los efectos no pueden preceder a las causas. Esto quiere decir, por ejemplo, que una madre no puede nacer antes que su hijo o un lector no puede leer esta entrevista antes de que usted la escriba. La mecánica cuántica sigue respetando la causalidad y, de hecho, toda teoría física seria ha de respetarla.  

¿Por qué es tan difícil comprender la mecánica cuántica? ¿Por qué son tantas sus interpretaciones?  

La principal dificultad se debe a que la cuántica describe el estado de un sistema mediante un objeto matemático conocido como “función de onda”, que contiene toda la información acerca de dicho sistema. Esto representa un cambio conceptual enorme: mientras que la física clásica describe un sistema especificando directamente las posiciones y velocidades de sus componentes, la cuántica los reemplaza por un objeto matemático complejo, proporcionando una descripción indirecta del sistema. Ahora bien, la función de onda no se puede medir en un experimento. Desde un punto de vista formal, esto supone una gran diferencia entre la física clásica y la mecánica cuántica, y es en gran medida una de las principales causas del carácter no intuitivo de esta última.

En cuanto a las interpretaciones, su origen está en el llamado “problema de la medición”. El formalismo cuántico nos dice que un sistema se encuentra en una superposición de estados (los resultados posibles de un experimento) hasta que se realiza el proceso de medición, mediante el cual el sistema adoptará uno de los estados posibles. Al medir, en cierta forma se “obliga” al sistema a definir instantáneamente su estado. Cómo ocurre esto es el principal problema conceptual de la mecánica cuántica. Este problema se ve claramente en la paradoja del gato de Schrödinger. La cuántica divide al mundo entre objetos microscópicos (con propiedades indefinidas) y macroscópicos (con propiedades bien definidas), aunque no aclara en qué punto se encuentra la división.

En un determinado momento citan ustedes a Borges, ¿qué tiene que ver el poeta argentino con la teoría de Heisenberg y Schrödinger?  

En la llamada “interpretación de los muchos mundos” de la cuántica, propuesta por Everett en 1957, se postula la existencia de varios mundos paralelos para librarse del problema de la medición. En cada uno de estos universos paralelos, habría diferentes “yo”, cada uno de los cuales será consciente de un solo resultado. Avisamos de paso que la mayoría de físicos no se toma en serio esta interpretación, que entre otras cosas no es falsable (en el sentido de Popper), o sea, no es científica. La idea de una continua bifurcación en el tiempo de la realidad es el tema central de un célebre cuento de Borges, “El jardín de senderos que se bifurcan”, publicado muchos años antes de que Everett formulara su interpretación. ¡Parece que algunos físicos no leen a Borges!

 Niels Bohr

Me voy un poco de tema. ¿Colaboró Heisenberg con los nazis en su opinión? ¿Por convencimiento? ¿No le quedó otra?  

El papel de Heisenberg en el proyecto nuclear alemán sigue siendo tema de debate entre los especialistas. Lo cierto es que permaneció durante la segunda guerra mundial en Alemania, donde estuvo a cargo de dicho proyecto, algo que es muy poco conocido incluso entre los físicos profesionales. Es difícil entender los motivos que pudieron llevar a Heisenberg a trabajar en este proyecto. Si bien nunca fue miembro del partido nazi, Heisenberg trabajó durante años a las órdenes del Tercer Reich sin oponerse nunca a nada. Creemos que Heisenberg representa un muy buen ejemplo de cómo no hay que comportarse en circunstancias similares. En este sentido, quizás su caso pueda servir para replantear la manera en que formamos a nuestros estudiantes de física.

¿Se les forma mal? ¿Cómo debería formárseles en ese caso?  

Los estudiantes de ciencias no reciben ningún tipo de formación ética en la universidad y cada vez menos en la educación secundaria. Esto es un grave error ya que, como hemos dicho antes, la ciencia encierra un gran poder, también para hacer el mal. El caso Heisenberg, por ejemplo, no se menciona en ningún libro de texto de mecánica cuántica; aunque sus motivos pueden ser tema de debate, hay hechos concretos que están fuera de toda duda. Ya hemos mencionado alguno de los retos futuros a los que se van a tener que enfrentar las nuevas generaciones de científicos. Por esta razón, debemos anticiparnos y asegurarnos de que tienen la formación necesaria para abordar esos retos y tomar las decisiones correctas ante tales desafíos. En definitiva, la ética debe ser una parte integral de la formación de cualquier ciudadano, y los científicos no pueden ni deben ser una excepción.

 

¿Pueden enunciar, de manera asequible, el principio de incertidumbre? ¿Da pie al subjetivismo filosófico?  

El principio de incertidumbre establece el hecho de que es imposible medir con total precisión y de forma simultánea algunas propiedades de un objeto como su posición y su velocidad. En otras palabras, nos dice que no importa la precisión de nuestros instrumentos, hay cosas que no se pueden medir de forma exacta. Esto implica que la naturaleza es un tanto difusa y no podemos acceder a toda la información que nos gustaría. Sin embargo, es importante recalcar que los límites que establece este principio no son muy restrictivos y sólo son importantes en el mundo microscópico. Además, nada impide medir propiedades individuales con toda la precisión del mundo. Así pues, en nuestra opinión, el principio de incertidumbre no da pie en absoluto al subjetivismo filosófico.

Quizá el aspecto de la mecánica cuántica que esté más relacionado con el subjetivismo es el acto de medición. Según la interpretación más extendida de la cuántica, la realidad sólo se crea cuando se realiza una medición, lo cual parece conferir al observador un papel fundamental que podría asociarse con el subjetivismo. Sin embargo, la cuántica no dice en ningún momento que el resultado de una medida dependa de alguna cualidad o propiedad del observador. De hecho, conviene recordar que hoy en día las mediciones en nuestros experimentos son realizadas típicamente de forma automatizada sin la intervención de un ser humano, lo cual excluye cualquier interpretación subjetiva. La realidad sigue siendo tan “real” como antes, solo que ahora sabemos que sus propiedades (la velocidad de un electrón, por ejemplo) no están bien definidas hasta que no se las mide.

¿Demuestra o fundamenta ese principio la noción o aspiración de libertad humana?  

Bueno, para ser precisos no es tanto el principio de incertidumbre, sino el hecho de que sólo seamos capaces de predecir probabilidades lo que está más relacionado con la noción de libertad y libre albedrío.

De acuerdo, de acuerdo, gracias por la corrección.  

Es obvio que en el mundo determinista de la física anterior a la mecánica cuántica, el libre albedrío no tenía cabida, todo “estaba escrito”. En ese sentido, mucha gente ha querido ver en la mecánica cuántica y su aleatoriedad intrínseca una posibilidad para rescatar el libre albedrío. Pero que algo sea aleatorio no implica necesariamente libertad. Lo cierto es que se sabe muy poco, por no decir nada, sobre cómo podría estar conectada la aleatoriedad cuántica con la conciencia y luego, con la libertad. Este es sin duda un tema fascinante en el que esperamos que se pueda avanzar en este siglo.

¿De qué hablarían Heisenberg y Bohr en su encuentro en Copenhague?  

Este encuentro es el tema central de la obra de teatro “Copenhague”, de Michael Frayn, publicada en 1998, donde el autor dramatiza el encuentro y plantea una hipotética discusión entre ambos. Pero hay que decir que, en realidad, no se sabe demasiado de qué hablaron, solo que Bohr salió muy impresionado del encuentro. Parece obvio que hablaron de la posibilidad de fabricar una bomba atómica, y fue probablemente este episodio el que hizo decidirse a Bohr a colaborar con el proyecto nuclear aliado.

En el último capítulo de su libro dedican muchas páginas al láser. ¿Por qué es tan importante?  

Por sus innumerables aplicaciones, que van desde la medicina (cirugía, corrección de miopía) y la industria (cortar o soldar materiales) a las comunicaciones, donde el láser es esencial para enviar información usando fibras ópticas. Estas aplicaciones son el resultado de décadas de investigación, con once premios Nobel concedidos por trabajos en los que el láser desempeña un papel esencial. Por dar algunos ejemplos, la espectroscopía láser ha permitido medir periodos de tiempo con mayor precisión que la de los relojes atómicos, algo equivalente a un segundo en la edad del universo. Otro resultado notable es el desarrollo del microscopio STED, que permitió superar el llamado “límite de difracción” de los microscopios ópticos, algo que se suponía imposible hasta hace muy poco. Hoy en día, el 80% de los estudios en células vivas que se realizan en el mundo emplean un microscopio STED.

De las interpretaciones de la mecánica cuántica, ¿cuál les convence más a ustedes?  

Como casi todos los físicos que emplean la cuántica a diario en el laboratorio, la llamada interpretación de Copenhague es la que adoptamos de forma natural. Esta es la interpretación más pragmática de la cuántica, debida sobre todo a Bohr, la gran autoridad sobre el tema desde el nacimiento de esta teoría. Como le gusta decir a Bunge, “los físicos de la época hablaban del espíritu de Copenhague como los cristianos del Espíritu Santo.”  

¿Pueden hacer un resumen de esa interpretación?  

La cuántica predice probabilidades, lo que implica que el mismo experimento puede dar resultados diferentes cada vez (si lo repito muchas veces, las probabilidades medidas son las que predice la cuántica). Si uno pregunta, como hacía Einstein, ¿qué hace que el mismo experimento dé diferente cada vez? La interpretación de Copenhague responde: no puede saberse. Esta interpretación asume que toda la información de un sistema está contenida en su función de onda, no podemos decir nada más. Al medir, se obliga al sistema a adoptar uno de los posibles valores, sin más explicaciones. Como consecuencia, el determinismo tal y como se entendía clásicamente ya no puede considerarse una propiedad del mundo microscópico, ya que los eventos individuales son objetivamente aleatoriosSu pragmatismo queda claro en algunas afirmaciones célebres de defensores de esta interpretación, como Heisenberg (“La transición de lo posible a lo real ocurre en el acto de observación”) o Jordan (“La medición no solo perturba lo que se mide, lo produce”).

Charles Townes, inventor del láser

La pregunta es casi innecesario después de lo dicho pero debo hacerla. ¿Por qué están tan interesados los filósofos de la ciencia por la mecánica cuántica, acaso más que por cualquier otra teoría? Pienso en Bunge o en Popper por ejemplo.  

La cuántica es la primera teoría donde, además de las ecuaciones, aparece el concepto de interpretación. Esto la hace muy atractiva para los filósofos. Einstein y Bohr pusieron de moda los “experimentos pensados”, que son esencialmente preguntas filosóficas sobre la realidad. Por ejemplo, la cuántica nos dice que las propiedades de los objetos están “objetivamente indefinidas” (son borrosas) hasta que se las mide, momento en que toman un valor definido. Einstein opinaba que esto no podía ser, que las propiedades están siempre bien definidas, incluso antes de medir. Esto es un debate puramente filosófico que, sorprendentemente, pudo dirimirse con un experimento, realizado por Alain Aspect en París en 1982. Hoy sabemos que Einstein estaba equivocado, y que las propiedades a nivel microscópico son “borrosas” hasta que se las mide.

¿Llegó Einstein a aceptar los resultados de la mecánica cuántica?  

Einstein aceptó los éxitos de la mecánica cuántica, cuya capacidad para predecir los resultados experimentales es indiscutible, pero siempre se negó a creer que era una teoría completa. Murió convencido de que algún día la cuántica sería reemplazada por otra teoría que se adaptara mejor a su visión de la naturaleza. Había varias cosas que le desagradaban de la mecánica cuántica. Una de ellas era la interpretación probabilística, es decir, el hecho de que sólo podemos predecir la probabilidad de que algo ocurra. A Einstein le costaba aceptar este abandono del determinismo como resumió en su célebre frase: “Dios no juega a los dados”. Pero quizá lo que mayor rechazo le producía a Einstein es la nueva concepción de la realidad que surge de la cuántica.

¿Y por qué ese rechazo a la nueva concepción cuántica de la realidad? ¿No son ustedes einsteinianos en este punto?  

Einstein era un firme defensor de la existencia de una realidad objetiva, con propiedades bien definidas, independiente del acto de medición, algo que niega la interpretación de Copenhague de la mecánica cuántica. Esa era la principal razón de su rechazo. Nosotros somos pragmáticos y no podemos obviar todas las evidencias experimentales que apuntan claramente a que la visión correcta es la de la mecánica cuántica y no la de Einstein. La visión einsteiniana es seguramente más hermosa y más fácil de reconciliar con nuestra experiencia cotidiana, pero resulta que a la Naturaleza no le importan nada nuestros prejuicios o preferencias.

¿Qué se quiere decir cuando se afirma que no existe aún una relatividad cuántica? ¿Por qué es tan importante que la haya?  

La relatividad general es capaz de describir la mayor parte de los fenómenos que involucran la gravedad, mientras que la cuántica describe correctamente la mayor parte de los efectos relacionados con las otras tres fuerzas fundamentales en la naturaleza (electromagnética y nuclear fuerte y débil). Sin embargo, hay fenómenos donde las cuatro fuerzas pueden jugar un papel importante y es entonces cuando se requeriría una teoría que unificara la relatividad y la cuántica. A pesar de intentos prometedores como los de la llamada gravedad cuántica o de la teoría de cuerdas, aún nadie ha sido capaz de desarrollar esa teoría del todo que describiría cualquier fenómeno físico. Dicha teoría sería importante para comprender fenómenos extremos como el Big Bang, el acto de creación del universo, o el interior de los agujeros negros. Estas son situaciones un tanto exóticas, pero de gran interés fundamental porque en ellas las leyes físicas actuales dejan de ser válidas.

¿Cuál es la relación entre ciencia y verdad desde su punto de vista de científicos e investigadores?  

La ciencia asume que existe una verdad objetiva y que puede conocerse. Contrariamente a lo que proponen los posmodernistas, los hechos existen, y afortunadamente la verdad objetiva es accesible mediante observación de la realidad (experimentos). En una época como ésta, donde somos bombardeados a diario con “fake news” y mucha gente no sabe distinguir un argumento de un hecho o una opinión, conviene destacar una vez más este punto tan elemental que ciertos irracionalistas modernos nos quieren hacer olvidar: ¡los hechos existen!

¿Quieren añadir algo más?  

Nos gustaría animar a la gente a leer más divulgación científica y, en general, a acercarse al mundo de la ciencia. La ciencia es obviamente una parte esencial de nuestra cultura y no se puede aspirar a comprender el mundo en el que vivimos sin conocer la visión que nos da la ciencia moderna. Además, creemos sinceramente que la ciencia nos hace seres más críticos y mejor informados y, por tanto, más libres. Por último, esperamos que libros como el nuestro ayuden a la gente a entender mejor la conexión íntima que existe entre la ciencia básica y el mundo también fascinante de las aplicaciones tecnológicas, por no mencionar las obvias implicaciones económicas. Como dice Hiroshi Amano (Nobel de Física en 2014 por la invención del LED azul): “hacemos física para mejorar la vida de la gente.”

Fuente: http://www.rebelion.org/noticia.php?id=255619&titular=%93la-ciencia-nos-hace-seres-m%E1s-cr%EDticos-y-mejor-informados-y-por-tanto-m%E1s-libres%94-

 

 

 

 

Comparte este contenido:

Salvador López Arnal

Profesor-tutor de Matemáticas en la UNED y enseñante de informática de ciclos formativos en el IES Puig Castellar de Santa Coloma de Gramenet (Barcelona).