Page 1 of 2
1 2

Un software analiza a fondo las bacterias y acelera el desarrollo de vacunas

 Anabel Paramá Díaz

Investigadores de la Universidad de Washington han desarrollado una herramienta informática que permite analizar pequeñas secuencias repetitivas del ADN de un microorganismo patógeno. Con esta información, se pueden identificar las diferentes cepas bacterianas de una forma rápida, eficaz y precisa. El enorme beneficio que aportará a la sociedad es que los procesos de desarrollo de las vacunas se acorten de forma considerable.

Cuando surge una nueva enfermedad producida por un microorganismo patógeno desconocido, inmediatamente los científicos inician el proceso de identificación de dicho patógeno para, si es posible, desarrollar una vacuna que pueda acabar con él. Todo esto suele llevar bastante tiempo.

Además, las pruebas de diagnóstico empleadas hoy en día para poder determinar qué patógeno nos está atacando, en la mayor parte de los casos, se basan en el cultivo de estos microorganismos; un proceso que requiere mucho tiempo y que, a veces, resulta inútil, pues no se llega a identificar el patógeno.

Este hecho, unido a que el ciclo de desarrollo de una vacuna es un proceso largo, tedioso y muy complejo, hace que desde que se manifiesta la presencia del patógeno hasta que se llega a desarrollar una vacuna eficaz contra él puedan pasar años. Un tiempo durante el cual el microorganismo sigue desarrollándose.

Sin embargo, no todo acaba aquí. En el caso de llegar a obtener una vacuna, surge otro grave problema, y es que existen patógenos que mutan sus estructuras externas (antígenos) según la zona geográfica en la que se encuentren o incluso en diferentes épocas estacionales. Los patógenos cambian sus estructuras para poder sobrevivir. ¿Esto qué significa? Que la vacuna diseñada para un patógeno en particular podría no ser completamente efectiva.

Nuevo aporte científico

Ahora, un grupo de investigadores de la Universidad de Washington (EEUU) ha desarrollado una herramienta informática que permite diferenciar entre cepas bacterianas a partir de la caracterización de pequeñas secuencias de ADN de cada patógeno.

Este dispositivo, al que han denomiando RepeatAnalyzer, proporciona la información necesaria sobre el patógeno de una forma rápida y precisa, lo que ayuda a identificar rápidamente de qué cepa bacteriana se trata.

De este modo, se puede acelerar el proceso de desarrollo de una vacuna, tal y como han descrito en la revista BMC Genomics los autores de la investigación. Este importante avance tecnológico podría impulsar y acelerar el camino hacia nuevas vacunas.

Diseño del experimento

Normalmente, para poder entender a las bacterias, los investigadores emplean pequeñas secuencias de ADN que se repiten consecutivamente y que incluyen su heredabilidad, la distribución geográfica y la patogenicidad que conllevan.

El problema surge con la catalogación y el seguimiento de estas repeticiones de ADN, ya que este puede ser un proceso muy difícil. Es decir, son muchos los grupos de investigación que están involucrados en la identificación de las secuencias bacterianas; y estar al corriente de su trabajo es costoso. Una tarea que, además, al hacerla de forma manual puede traer consigo errores humanos.

El hecho de introducir errores es muy grave. Si la identificación de la cepa bacteriana no es la correcta, la vacuna que se va a desarrollar no será completamente eficaz. De ahí la preocupación de los científicos en trabajar para solucionar este problema.

Ante esta situación, los investigadores de la Universidad de Washington han desarrollado una herramienta informática que reduce al mínimo todos estos problemas, ya que permitiría ser exactos en cuanto a la caracterización bacteriana, para evitar así todo error humano.

El RepeatAnalyzar permite analizar, registrar y catalogar las pequeñas secuencias de ADN que se repiten de manera consecutiva y un número determinado de veces, así como el genotipo al que dan lugar.

¿Cómo hace esto? Expliquemos un poco el proceso para entender el funcionamiento del software y, de esta manera, poder percibir la magnitud de la importancia de este nuevo dispositivo.

El software a prueba

Para determinar si el software cumpliría las expectativas con las que se desarrolló, el equipo de investigación puso a prueba su funcionamiento empleando una bacteria: la Anaplasma marginale (transmitida por garrapatas entre el ganado vacuno).

Este patógeno tiene una alta variedad de cepas distribuidas por todo el mundo, lo que hace que el desarrollo de una vacuna eficaz contra él sea extremadamente complejo. Por ello la A. marginale se ha convertido en un modelo perfecto de trabajo.

Los investigadores introdujeron en el software una secuencia genética o proteíca de la bacteria en estudio. En general, el software se encarga de rastrear el material genético y determinar cuáles son las secuencias concretas de ADN que se repiten consecutivamente (secuencias SSR).

Una vez detectadas todas esas secuencias, proporciona información, si este genotipo determinado ya ha sido analizado anteriormente. Además estudia la variabilidad que existe en distintas zonas geográficas. Así, gracias a esta herramienta, los científicos han logrado describir las características de A. marginale con todo detalle.

La información obtenida les permitió comprender la actuación de la bacteria A. marginale, cómo se distribuye geográficamente, y el grado de patogenicidad que puede llegar a provocar, así como su transmisión. El éxito de este programa es, entonces, enorme.

Beneficios

Esta herramienta ha sido empleada en un modelo concreto de una bacteria con una gran variedad de cepas y ampliamente distribuida por el mundo, tal y como hemos dicho anteriormente.

Sin embargo, los investigadores proponen que también puede ser empleada en el estudio de otras cepas bacterianas que muestren secuencias de ADN repetitivas y una amplia variedad de cepas.

La puesta en marcha del software permitiría así a los investigadores realizar un seguimiento de las cepas bacterianas en un mapamundi y obtener una serie de análisis y métricas necesarias para la caracterización de las cepas.

En caso contrario, cabría la posibilidad de que cepas bacterianas potencialmente patógenas pasasen desapercibidas. En consecuencia, no se llegaría a su identificación exacta. Por tanto, la vacuna desarrollada podría llegar a ser mucho menos eficaz de lo que realmente sería empleando este software.

Referencia bibliográfica:

Catanese HN, Brayton KA, Gebremedhin AH. RepeatAnalyzer: a tool for analysing and managing short-sequence repeat data. BMC Genomics (2016). DOI: 10.1186/s12864-016-2686-2.

Fuente del articulo: http://www.tendencias21.net/Un-software-analiza-a-fondo-las-bacterias-y-acelera-el-desarrollo-de-vacunas_a42991.html

Fuente de la imagen: http://www.tendencias21.net/photo/art/grande/9860551-15950084.jpg?v=146882573

Comparte este contenido:

La acumulación de neuronas muertas en el cerebro agrava las enfermedades mentales

14 septiembre de 2016 / Por: Anabel Paramá Díaz / Fuente: http://www.tendencias21.net/

Se produce cuando la microglía no elimina la «basura» como hace normalmente, lo que desencadena la inflamación cerebral

Un grupo internacional de científicos ha investigado por primera vez cómo funciona el proceso de fagocitosis que llevan a cabo las células “detectoras de la basura cerebral”: la microglía. Han descubierto que, tras producirse muerte o lesión neuronal en cerebros enfermos, estas células se vuelven “ciegas” y no son capaces de realizar su función. Esto desencadena una respuesta inflamatoria que agrava la lesión cerebral sufrida. Por Anabel Paramá.

Cuando nos hablan de células muertas, inmediatamente pensamos en las células de la piel. Éste es un proceso que no nos resulta extraño. Las células de nuestra piel mueren y, para evitar su acumulación, nos aconsejan una serie de procedimientos sencillos. Sin embargo, debemos ser conscientes de que en nuestro organismo, las células de la piel no son las únicas que mueren.

Las neuronas del cerebro también lo hacen. Sabemos que estas células mueren tras completar su ciclo natural de vida, por envejecimiento, o debido a lesiones cerebrales traumáticas y enfermedades neurodegenerativas. Pero, ¿nos hemos planteado alguna vez qué ocurre con ellas después de muertas? ¿Cómo puede eliminarlas nuestro organismo ? O, si no son eliminadas, ¿qué sucede entonces?

Ahora equipo multidisciplinar de investigadores ha estudiado por vez primera los procesos de muerte neuronal y de fagocitosis o eliminación de neuronas muertas, llevado a cabo por la microglía de cerebros enfermos. En su estudio describen el funcionamiento de los mecanismos de limpieza del cerebro cuando los pacientes sufren enfermedades neurodegenerativas, concretamente epilepsia.

Para llevar a cabo el estudio, publicado en la revista PloS Biology, los científicos recogieron muestras de cerebro de pacientes que padecían epilepsia, así como de ratones epilépticos.

Los resultados mostraron que las células de la microglía presentaban un comportamiento anómalo, y eran incapaces de eliminar las neuronas muertas. En consecuencia, estas neuronas se acumulan como residuos y provocan el desencadenamiento de una respuesta inflamatoria que empeora la lesión cerebral.

Microglía y enfermedades neurodegenerativas

La muerte de neuronas es un proceso natural de envejecimiento que ocurre en el desarrollo normal del sistema nervioso de todos nosotros. Un fenómeno neuronal al que estamos abocados todos los seres humanos.

En condiciones normales, la eliminación de esta “basura” cerebral permite que el tejido cerebral próximo no sufra ningún tipo de alteración y pueda seguir funcionando de forma adecuada. Este proceso de eliminación se denomina fagocitosis, y las encargadas de realizarlo son las llamadas células de la microglía, que elaboran la primera reacción inmune natural del cerebro, crucial para preservar la integridad del sistema nervioso.

La fagocitosis, por lo tanto, es un proceso esencial para mantener la homeostasis ante un gran número de enfermedades inflamatorias y autoinmunes. Pero su papel en el cerebro está poco estudiado.

Las células de la microglía están continuamente analizando su medio. Presentan una gran cantidad de ramificaciones que están en constante movimiento por todo el cerebro. Gracias a esta particularidad, cuando se produce un daño en el sistema nervioso, reaccionan y migran hacia la zona en cuestión.

Una vez allí, repararan el tejido liberando diferentes componentes que permiten eliminar elementos extraños, no deseados o dañados, mediante la fagocitosis. Sin embargo, estos componentes, en algunas ocasiones, pueden afectar a las neuronas sanas y provocar una eliminación excesiva e innecesaria de neuronas. Esto, que ocurre en enfermedades como el Parkinson y el Alzheimer, origina un ambiente patológico.

Al menos, esto era lo que se creía que ocurría, pues se presuponía la eficacia de la microglía como recolectoras y destructoras (fagocitos) de residuos, también en cerebros enfermos.

Sin embargo, la nueva investigación señala que puede ocurrir todo lo contrario, es decir que, en cerebros enfermos o lesionados, la microglía no elimine neuronas muertas que sí debrían de ser eliminadas para evitar una respuesta inflamatoria del cerebro. Este hecho tendría una grave repercusión patológica.

El experimento

Para comprobar si la microglía se comportaba como fagocitos eficaces en un cerebro enfermo, el equipo de investigación, dirigido por la Dra. Amanda Sierra, directora del laboratorio de Biología Celular Glial del Achucarro Basque Center for Neuroscience (País Vasco), indujo experimentalmente una serie de procesos apoptóticos (que inducen a las células a morir cuando están dañadas).

Con la inducción de estos procesos se observó cómo respondía la microglía, de una forma generalizada. Lo que hacían estas células era establecer diferentes estrategias que mejorasen su eficacia fagocítica. Es decir, aumentaban su capacidad de captación de la “basura celular”.

De esta manera, en caso de generarse un incremento de células apoptóticas (células dañadas que están programadas para morir y evitar enfermedades como el cáncer), la microglía era capaz de mantener una relación adecuada y equilibrada entre la apoptosis y la fagocitosis.

Sin embargo, la sorpresa llegó cuando estudiaron muestras de cerebro extraídas de personas que padecían epilepsia y de ratones epilépticos, desarrollados experimentalmente. En estos casos, se detectó que la relación existente en condiciones normales entre la apoptosis y la fagocitosis de la microglía se perdía de forma crónica.

Este trabajo ha sido el primero en cuantificar el proceso de fagocitosis en el cerebro de personas enfermas de epilepsia.

El descubrimiento

Así que, en el caso de pacientes con epilepsia, la microglía no actúa, digamos que “está ciega”. Por eso no logra detectar las neuronas muertas, y éstas no pueden ser eliminadas ni destruidas, lo que tiene consecuencias nefastas para el paciente.

La inactividad de la microglía hace que la fagocitosis no se lleve a cabo, lo que conlleva que se produzca una enorme acumulación de neuronas muertas en el cerebro. Un acúmulo excesivo de residuos que, al igual que la basura en los basureros, comienza a descomponerse.

En las neuronas muertas, la membrana se va haciendo cada vez más permeable, lo que permite la liberación de compuestos tóxicos presentes en su interior. Esos compuestos dañan a las neuronas vecinas, lo que provoca una respuesta inflamatoria del cerebro que lo daña todavía más.

En el caso concreto de la epilepsia, se sabe que, en algunas ocasiones y durante las convulsiones, las neuronas mueren. Así que el hecho de que la fagocitosis no se realice favorece la inflamación producida en el cerebro. Esto fomenta la aparición de crisis epilépticas, caracterizadas por las impactantes convulsiones.

En un futuro

Este hallazgo abre vías para el desarrollo de nuevas terapias que permitan paliar los efectos de las enfermedades cerebrales, terapias que “enseñen” a la microglía a mejorar su eficacia para la correcta eliminación de neuronas muertas.

De hecho, el equipo de investigación está ya trabajando en el desarrollo de fármacos que promuevan este proceso de limpieza, es decir, que en condiciones lesionadas activen el proceso de fagocitosis. Esto permitiría ayudar en los tratamientos de enfermedades como la epilepsia.

Fuente artículo: http://www.tendencias21.net/La-acumulacion-de-neuronas-muertas-en-el-cerebro-agrava-las-enfermedades-mentales_a42719.html

Comparte este contenido:

El triclosán altera rápidamente las bacterias del intestino, revela un estudio

07 de septiembre de 2016 / Por: Anabel Paramá Díaz / Fuente: http://www.tendencias21.net/

Es un compuesto presente en muchos productos de uso diario, como jabones, juguetes o pasta de dientes

Hasta hace unos años, los microorganismos de nuestro intestino no tenían importancia para los investigadores. Sin embargo, en los últimos tiempos esto parece haber cambiado drásticamente. De hecho, cada vez son más los estudios que nos muestran la estrecha relación que mantenemos con estos microorganismos, y su importancia para nuestro bienestar.

En este sentido, diversas investigaciones apuntan a que el contenido bacteriano de nuestro intestino podría desempeñar un papel muy importante en enfermedades autoinmunes e inflamatorias. Enfermedades del calibre del cáncer múltiple, la enfermedad de Chron, el autismo o el TDAH, entre otras.

De tal manera que, probablemente y en un corto período de tiempo, el conocimiento adquirido sobre las interacciones entre los seres humanos y su microbiota sea tan importante para la medicina como lo es, actualmente, el conocimiento de la genética.

Pensar que los microorganismos existentes en nuestro intestino puedan causar enfermedades como las mencionadas resulta, francamente, impactante. Pero es así. El ser humano ha dejado de ser concebido como un individuo y se empieza a entender como un ecosistema.

A raíz de estas sospechas, numerosos científicos han querido averiguar los factores que pueden alterar la comunidad bacteriana intestinal de una forma tan grave como para generar estos resultados.

Efecto del triclosán en el intestino

En esta línea de trabajo, un grupo de investigadores de la Universidad del Estado de Oregón (EEUU) ha llevado a cabo un importante análisis sobre uno de los compuestos con los que convivimos a diario y que parece que puede alterar enormemente la microbiota intestinal que habita en nuestro interior: el triclosán.

Para el desarrollo de este trabajo, los investigadores emplearon un modelo animal habitual en estudios toxicológicos: el pez cebra. En estos organismos comprobaron que este agente puede provocar rápidos cambios en la diversidad, en la estructura de la red microbiana y en la composición de la microbiota intestinal.

El contacto de los peces con el triclosán fue propiciado a través de la dieta. Una vez alimentados los peces, los científicos purificaron el ADN de la muestra estudiada y secuenciaron regiones específicas en los genes de la subunidad 16S del ribosoma.

Este análisis permitió identificar de forma rápida los microorganismos y su abundancia relativa en la muestra estudiada, facilitando así la detección de la relación entre un compuesto y las enfermedades o lesiones que favorece o induce a su generación.

El triclosán en nuestra vida

Los seres humanos estamos expuestos continuamente a una serie de productos químicos, metales, conservantes, microorganismos y nutrientes perjudiciales.

Pero se sabe muy poco sobre los efectos que todos éstos ejercen sobre la estabilidad de la microbiota intestinal y sobre su estructura. Por lo que los investigadores estiman importante discernir entre aquellos agentes que son considerados responsables de la alteración bacteriana.

El triclosán es un agente antifúngico y antibacteriano que despierta un gran interés entre los investigadores. Este interés es debido al amplio uso que se le da en productos o compuestos que utilizamos en nuestra vida diaria.

El triclosán se utiliza en productos de uso diario como jabones, juguetes y pasta de dientes, ente otros. Además se emplea también en materiales de embalaje, procesamiento y almacenamiento de alimentos.

Esto hace que los expertos consideren que determinar su efecto sobre la salud humana sea una tarea realmente complicada. Entre otras cosas porque hay productos, de los anteriormente mencionados, en los que la concentración es enormemente baja.

Al encontrarse en una amplia diversidad de productos y materiales empleados en nuestra vida cotidiana, no existe una población que no haya sido expuesta, con la que se pueda comparar.

Además, es un compuesto que se absorbe fácilmente a través de la piel y del tracto intestinal. De hecho, se hademostrado su existencia en orina, heces y leche materna, además de asociarse a la alteración endocrina en peces y ratas, actuando como promotor de tumores de hígado e inductor de alteraciones de las respuestas inflamatorias.

Por esta razón, el hecho de que estos investigadores hayan encontrado un modelo de análisis toxicológico funcional que permita estudiar los efectos intestinales de este producto tiene una enorme importancia para la comunidad científica.

Importancia de la microbiota intestinal

Podemos pensar que es contradictorio que un agente antimicrobiano y antifúngico pueda llegar a perjudicarnos tanto. Ahora bien, este hecho sucede de forma indirecta. Es decir, atacando a nuestra microbiota intestinal puede llegar a ser el causante de enfermedades del calibre de la diabetes, enfermedades cardíacas y artritis, entre otras.

Con esto sería atrevido pensar, inmediatamente, que el triclosán es el causante de diabetes, artritis, etc. No queremos afirmar eso. Lo que nos muestra el trabajo del equipo estadounidense es que esa posibilidad existe. Pero es necesario seguir investigando sobre esta sustancia para poder llegar a hacer afirmaciones taxativas.

El término microbiota hace referencia a la comunidad de microorganismos vivos que viven en un nicho ecológico determinado. Pues bien, la microbiota que habita en el intestino humano es una de las comunidades más densamente pobladas, incluso más que el suelo.

Las bacterias que colonizan nuestro intestino ejercen funciones vitales para nuestra salud. Son las responsables de metabolizar residuos no digeribles que ingerimos en la dieta, así como, los detritus celulares (residuos celulares).

No sólo eso, impiden que seamos colonizados por bacterias externas patógenas, también desempeñan un papel esencial en el desarrollo del sistema inmune y, por otro lado, son las que producen una serie de micronutrientes necesarios. Un claro ejemplo, es la vitamina B12. Una vitamina esencial para el funcionamiento del cerebro y del sistema nervioso, entre otras necesidades humanas.

Como ya vimos, su alteración trae consigo enfermedades extremadamente graves. De ahí que todo el conocimiento que está produciendo este tipo de estudios, está generando, a su vez, una gran preocupación en la comunidad científica. De hecho, parece que se está comenzando a sentar las bases de una medicina más relacionada con la ecología.

En definitiva tal y como sugiere Gaulke, es necesario llevar a cabo más estudios sobre la evaluación de los efectos que pueden llegar a generar compuestos como el triclosán. Algunos de éstos podrían tener efectos dramáticos y de larga duración.

Referencia bibliográfica

Gaulke C, Barton C, Proffitt S, Tanguay R, Sharpton T. Triclosan Exposure is associated with rapid restructuring of the microbiome in adult Zebrafish. PLOS ONE (2016). DOI:10.1371/journal.pone.0154632.
Fuente artículo: http://www.tendencias21.net/El-triclosan-altera-rapidamente-las-bacterias-del-intestino-revela-un-estudio_a42674.html
Comparte este contenido:

La ciclodextrina disuelve el colesterol y podría evitar graves enfermedades

24 de agosto de 2016 / Por: Anabel Paramá Díaz / Fuente: http://www.tendencias21.net

Sabemos que el colesterol es una parte fundamental de las membranas de nuestras células. Además, es precursor de la vitamina D, una molécula de enorme importancia, entre otros aspectos, para la formación de hormonas como los estrógenos y la testosterona.

Sin embargo, también sabemos que existe una gran preocupación médica cuando la presencia del colesterol en sangre tiene relación con la aterosclerosis. Esta enfermedad cardiovascular provoca la deposición de grasas y colesterol en las paredes de las arterias y produce un gran número de problemas posteriores.

De hecho, la arterosclerosis y sus consecuencias representan una de las causas más frecuentes de muerte en los países industrializados, sobre todo, por ataques cardíacos y accidentes cerebro-vasculares.

Por ello, la mejora en los tratamientos frente a la aterosclerosis permitiría reducir la mortalidad en el número de pacientes que padecen esta enfermedad. Sin embargo, todavía queda mucho por hacer.

Los investigadores siguen buscando formas que permitan mejorar la salud de estos pacientes, ya que muchos de ellos no pueden ser tratados con los tratamientos existentes hoy en día, debido a los efectos secundarios que experimentan.

Nuevos avances

Un grupo internacional de investigación, bajo la dirección del profesor Eike Lazt, ha probado la eficacia del oligosacárido denominado ciclodextrina para el tratamiento de la aterosclerosis. La idea de esto surgió al saber que la ciclodextrina es un compuesto que aumenta la solubilidad del colesterol.

En el presente estudio, publicado en Science Translational Medicine, ratones con aterosclerosis fueron tratados con ciclodextrina. Los resultados mostraron la existencia de una reducción en el tamaño de la placa aterosclerótica, así como en el número de cristales de colesterol presentes en sangre. También se comprobó que había cierta regresión de dicha placa, incluso cuando los ratones fueron alimentados con dietas ricas en colesterol.

Este es un enfoque terapéutico prometedor para el tratamiento de la aterosclerosis, pues la ciclodextrina es un fármaco aprobado actualmente para usar en humanos. Por tanto, podría ser aplicado con relativa facilidad en pacientes con este enfermedad. También podríamos hablar de una potencial  nueva terapia para la enfermedad cardiovascular.

Acumulación de colesterol

Demasiado colesterol en sangre puede provocar que, junto con el calcio y otras sustancias, se formen placas que hacen que las arterias sean menos flexibles, se estrechen y, en consecuencia, se reduzca el flujo sanguíneo por ellas. Esto hace que el nivel de oxígeno que llega al corazón, al cerebro u otras partes del cuerpo sea insuficiente.

Además, esta situación conlleva un mayor riesgo de sufrir arteriosclerosis o endurecimiento de las arterias, lo que puede bloquear, total o parcialmente, la circulación de la sangre.

¿Por qué se produce este acúmulo? No se sabe exactamente. La hipótesis más aceptada es que cuando realizamos algún tipo de actividad nociva (por ejemplo, fumar) se provocan lesiones en las paredes de las arterias. Esto hace que las plaquetas acudan de inmediato hacia la zona lesionada para intentar curar la lesión.

Este acúmulo forma una placa endurecida que, con el tiempo, puede ir aumentando de tamaño. Con ello se genera un estrechamiento paulatino de la circulación sanguínea en las arterias, pudiendo llegar a bloquearlo completamente. La placa también puede llegar a romperse y esto genera pequeños coágulos que igualmente obstruirían la arteria.

El secreto: disolver el colesterol

Una manera sencilla y directa de evitar los problemas generados por la presencia elevada de colesterol en sangre sería disolver los cristales de colesterol y eliminarlos por la orina. El problema es cómo hacer esto.

Los científicos sabían que existe un regulador del metabolismo del colesterol, clave en este proceso: el LXR. Si hay exceso de colesterol, este factor genera una señal para reducir el colesterol en sangre y reducir la respuesta inflamatoria. El problema es que nuestro cuerpo, a veces, no reacciona tan rápido o tan eficazmente como nos gustaría. Por ello, en ocasiones necesitamos ayuda externa.

Esta ayuda podría provenir, sin ninguna duda, de la ciclodextrina. De hecho, como hemos visto, en este trabajo se prueba la eficacia de la ciclodextrina para promover la solubilidad de los cristales del colesterol, la mejora de la actividad del LXR y la movilización del flujo de colesterol. Todo ello reduce la inflamación típica de la aterosclerosis y podría disminuir, a su vez, los efectos perjudiciales de la misma.

Ciclodextrina y macrófagos

Hemos dicho que la ciclodextrina solubiliza los cristales de colesterol, pero no sólo eso, sino que además provoca un segundo proceso muy beneficioso: mejorar la actividad de los macrófagos.

¿Qué implica esto? La mejora en la actividad de los macrófagos implica un incremento de la capacidad de estas células del sistema inmune para captar  moléculas perjudiciales. Es aquí precisamente donde ciclodextrinas y macrófagos colaboran para la eliminación del colesterol.

Las ciclodextrinas lo que hacen es reprogramar al sistema inmune del paciente y, por tanto, también a los macrófagos. Para ello logran que los macrófagos reduzcan la respuesta inflamatoria, siendo esta mucho menor. Algo semejante a lo que produce un antihistamínico cuando tenemos una reacción alérgica.

Pues bien, de esta forma, el macrófago puede absorber el exceso de colesterol y eliminarlo, al mismo tiempo que no se produce un incremento en la inflamación de las paredes arteriales y, por tanto, se reduce la probabilidad de formación de placa aterosclerótica.

Condicionantes futuros

Sin ninguna duda el trabajo de este grupo de investigación es interesante e ilusionante para muchas personas que padecen estas enfermedades. De hecho, Latz ha declarado para la revista ScienceNews que están a la espera de encontrar financiación y de tener un socio industrial para poder realizar los costosos ensayos clínicos en humanos y producir un fármaco.

El problema es que la ciclodextrina es un azúcar que ha sido aprobado por la FDA (Administración de Alimentos y Fármacos de EE.UU) para su utilización en humanos. ¿Por qué es esto un problema? Pues porque no puede ser patentado y, por tanto, las industrias farmacéuticas pierden interés en su elaboración a nivel industrial.

Referencia bibliográfica:

Zimmer y col. Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming. Science Translational Medicine (2016). DOI: 10.1126/scitranslmed.aad6100.

Fuente noticia: http://www.tendencias21.net/La-ciclodextrina-disuelve-el-colesterol-y-podria-evitar-graves-enfermedades_a42906.html
Comparte este contenido:

Nanopartículas “reportero” liberan fármacos en tumores e informan de su eficacia

10 de agosto de 2016 / Por: Anabel Paramá Díaz / Fuente: http://www.tendencias21.net/

Permiten determinar en tiempo real si los tratamientos contra el cáncer funcionan o no.

Un grupo interdisciplinar de investigadores ha diseñado unas nanopartículas (partículas de tamaño nano) que liberan fármacos en los mismos tumores y además permiten determinar, a tiempo real, si ese tratamiento es eficaz o no. De momento ha sido probado en ratones con resultados muy prometedores.

La palabra cáncer va asociada en muchos casos, afortunadamente, a una lucha y recuperación de dicha enfermedad. A veces porque el diagnóstico se ha realizado a tiempo, otras porque el tratamiento proporcionado ha sido el óptimo para su eliminación.

La comunidad científica es unánime al determinar que el fracaso de la terapia frente al cáncer es una de las principales causas de mortalidad. Poder detectar de forma temprana la efectividad de un tratamiento es, por tanto, vital. Algo que puede tener un efecto significativo en el resultado final de tratamiento y, por tanto, en la calidad de vida del paciente.

Hay que añadir que la respuesta de los tumores a un tratamiento de quimioterapia se determina mediante técnicas de medidas anatómicas directas: tomografía computacional y resonancia magnética, entre otras. El problema es que estas técnicas carecen de sensibilidad o especificidad, de manera que no permiten evaluar la respuesta de una forma temprana. Y estas lecturas no siempre son fiables.

Nanopartículas contra el cáncer

Ahora, un grupo de investigadores de Estados Unidos (Harvard Medical School, Boston) e India (National Chemical Laboratory), ha diseñado nanopartículas que presentan una doble función. Por un lado, aportan el tratamiento quimoterápico o inmunoterápico al tumor y, por otro, aportan información sobre la eficacia del tratamiento a tiempo real.

Estas nanopartículas portan fármacos contra el desarrollo de tumores y, además, se iluminan con luz fluorescente cuando las células cancerígenas empiezan a morir.

Esto permitirá a los médicos monitorizar los efectos del tratamiento del cáncer en un plazo de 8 horas, y poder saber exactamente qué tumores están respondiendo al tratamiento y cuáles no, desde el inicio de dicho tratamiento y sin que haya que esperar un tiempo que puede ser de vital importancia para el paciente.

El uso de nanomateriales en medicina

La ciencia ha mostrado importantes avances en el campo de lananomedicina en los últimos años. Entre ellos destacan el desarrollo de nanomateriales que se emplean en la administración de fármacos frente a enfermedades como el cáncer, para que el tratamiento resulte más eficaz.

Sin embargo, no existen nanomateriales que combinen una doble función: la de mostrar mediante imágenes la eficacia de un tratamiento determinado y la de ejercer actividad terapéutica. Un sistema dual denominado técnicamente tratanóstico o teranóstico. Las ventajas que ofrece este sistema son, como ya dijimos, la monitorización in vivo.

En base a esto, los investigadores responsables de este estudio han desarrollado una nueva estructura polimérica denominada “nanopartícula reportero” dos en uno, ya que por un lado responde y por otro se estimula.

Esta nanopartícula está constituida por un esqueleto formado por un agente quimioterápico o inmunoterápico citotóxico y un elemento que se activa enzimáticamente, elaborado a partir de un colorante fluorescente.  Expliquemos un poco el proceso de funcionamiento de este complejo sistema.

Funcionamiento de las nanopartículas

Cuando se produce la muerte de las células cancerígenas se activa una proteína denominada caspasa. Este fenómeno celular hizo que los investigadores pensaran en incluir, en la nanopartícula, una molécula fluorescente inactiva. De tal manera que, cuando esta nanopartícula está en presencia de la caspasa, la molécula fluorescente se activa.

Estas partículas “reportero” fueron inyectadas en el torrente sanguíneo de ratones enfermos de cáncer. Una vez allí, las nanopartículas comienzan a rodear al tumor e inician la liberación del fármaco. Esto provoca el comienzo de la destrucción de las células cancerígenas y la consiguiente activación de las caspasas. Esta activación, a su vez, produce la iluminación de la molécula fluorescente que brilla bajo la luz infrarroja.

Todo ello permite distinguir entre aquellos tumores que son sensibles al tratamiento y aquellos que son resistentes al mismo, in vivo. Y esto podría saberse en tan solo 8 horas después de dicho tratamiento. Algo que con los métodos actuales (como la exploración de tomografía por emisión de positrones, tomografía computarizada y la resonancia magnética) sólo puede determinarse cuando el paciente ha recibido múltiples ciclos de tratamiento.

Además, las nanopartículas creadas pueden ser empleadas para detectar la inhibición que, en ocasiones, el propio sistema inmune del paciente realiza sobre el tratamiento. En base a ello, las nanopartículas diseñadas tienen capacidad para entregar eficazmente un agente quimioterápico o un inhibidor inmunológico a una célula cancerosa (inhibidor checkpoint).

Inhibidor checkpoint

Una función importante del sistema inmune es su capacidad para diferenciar células normales del organismo de aquellas que son “extrañas”, lo que le permite atacar sólo a éstas últimas.

Para poder hacer esto, el sistema inmune utiliza checkpoints, que son moléculas de ciertas células inmunes que necesitan ser activadas o inactivadas, según el caso, para que se inicie la respuesta inmunitaria.

Las células cancerígenas, en ocasiones, encuentran caminos que utilizan estos checkpoints, lo que les permite evitar ser atacadas por el sistema inmunitario. Así, los fármacos que tienen como objetivo atacar estoscheckpoints se consideran una gran promesa para ser empleadosen  tratamientos anticancerígenos.

Futuras mejoras

La presente investigación, como vimos antes, ha sido realizada en ratones. Por lo tanto, serán necesarias pruebas de seguridad y eficacia antes de que esta técnica pueda tener aplicabilidad clínica. Pero el hilo conductor ya está establecido, ahora “sólo” será necesario su adaptabilidad al ser humano.

Los siguientes pasos incluyen rediseñar estas nanopartículas empleando materiales y colorantes aprobados clínicamente y que posibiliten un seguimiento fácil. Sin ninguna duda, estos materiales deben de carecer de toxicidad para los humanos.

Aquí es donde radica uno de los principales problemas, pues los colorantes empleados suelen ser tóxicos y deben ser eliminados con rapidez. En cambio, el medicamento necesita un tiempo de actuación. Conjugar estos dos aspectos es sumamente complejo.

Sin embargo, el enfoque de este estudio de poder detectar la presencia o ausencia de eficacia de un fármaco a tiempo real es realmente importante, pues existe la enorme necesidad de personalizar las terapias frente al cáncer para poder ser más eficaces y poder ganar la batalla a este tipo de enfermedad tan dura y cruel.

Referencia bibliográfica:

Kulkarnia A, Raoa P, Natarajana S, Goldmana A, Sabbisettic VS, Khatera Y, Korimerlaa N, Chandrasekara V, Mashelkard RA y Senguptaa S. Reporter nanoparticle that monitors its anticancer efficacy in real time. PNAS (2016). DOI: 10.1073/pnas.1603455113/-/DCSupplemental.

Fuente artículo: http://www.tendencias21.net/Nanoparticulas-reportero-liberan-farmacos-en-tumores-e-informan-de-su-eficacia_a42763.html

Comparte este contenido:

Se abre la puerta al mapa del genoma perdido

03 de agosto de 2016 / Por: Anabel Paramá Díaz / Fuente: http://www.tendencias21.net/

Hace muchos años, Charles Darwin revolucionó el pensamiento de su época incluyendo dos conceptos que han transformado el mundo: la adaptación y la evolución. Estas ideas le costaron la mofa y risa de sus colegas, pero generaron un impacto de tal magnitud que nada en la biología ha sido igual desde entonces.

La evolución, sin ninguna duda, es el principio básico que unifica todo el edificio de la Biología. Sin este proceso, no es posible entender las características que diferencian a los seres vivos ni las adaptaciones que han ido sufriendo a lo largo de los años; ni mucho menos la relación de proximidad que existe entre las diferentes especies.

De hecho, otro de los grandes biólogos de los últimos años, Theodosius Dobzhansky, afirmó que “nada tiene sentido en biología si no es bajo la luz de la evolución”. Pero no solo eso. La evolución es un gran enigma que nunca deja de sorprendernos.

Recientemente, por ejemplo, se ha descubierto el vínculo evolutivo entre las estructuras respiratorias de peces y las extremidades de los vertebrados. Asimismo, también hace poco, se ha probado que los apéndices de mamíferos (pelos), aves (plumas) y reptiles (escamas) comparten un mismo ancestro, un reptil. Y las sorpresas no terminan aquí.

Ahora, un nuevo estudio realiza nuevas aportaciones, no menos sorprendentes que las anteriores. Un grupo de investigadores de la Universitat de Barcelona ha realizado un exhaustivo trabajo que señala que la pérdida de genes es un proceso de adaptación evolutiva.

Evolución y adaptación

La pérdida de material genético parece algo contradictorio. La lógica convencional nos lleva a pensar que “más es mejor”. Por ello, la adquisición de nuevos genes sería lo que nos permitiría evolucionar. Nada más lejos de la realidad.

Los investigadores, tal y como explican en la prestigiosa revista científica Nature Reviews Genetics, aportan una visión muy distinta y abren la posibilidad a la generación de otro gran programa de investigación; que podría ser algo así como el “Proyecto Genoma Perdido”.

La pérdida de genes se puede considerar como un proceso de cambio genético y adaptación evolutiva. De hecho, el estudio de los genomas de organismos muy diversos ha desvelado que la pérdida genética es un proceso que se ha venido produciendo a lo largo de los tiempos y que ha afectado a todas las formas de vida.

La nueva perspectiva biológica relacionada con la pérdida genética nos lleva a plantearnos una serie de preguntas fundamentales: ¿Qué hace cambiar a los genes para pasar de ser esenciales a ser prescindibles y, llegar incluso a desaparecer? ¿Tiene esto implicaciones para la humanidad?

Pérdida de genes y dianas terapéuticas

Sabemos que los genes desempeñan funciones muy importantes y son los determinantes de nuestra calidad de vida. Por ello, conocer en profundidad los genes perdidos podría ayudarnos a mejorar nuestra calidad de vida, ya que mostraría la existencia de variables genéticas resistentes a enfermedades o variedades potencialmente patológicas.

Pero antes es necesario conocer el proceso de pérdida de genes. Los autores explican esto en referencia a lo que ellos denominan “ontología de los genes”. Es decir, cómo son y cómo funcionan a nivel interno. Dicha ontología se mueve entre la funcionalidad y su posición en el genoma.

Ambos elementos deben estar equilibrados para que todo funcione idealmente. Ahora bien, en ocasiones la funcionalidad de los genes se mantiene a través de procesos genéticos que hacen que la función de un determinado gen se vea disminuida. Ello lo conduce hacia una posible desaparición.

Pues bien, el mal funcionamiento génico o la existencia de mutaciones provoca alteraciones que pueden tener consecuencias dramáticas, como patologías del calibre del cáncer.

Entonces saber cómo se pierden y cuántos se han ido perdiendo resulta básico para averiguar porqué existen alteraciones génicas que se manifiestan exteriormente y otras que pasan totalmente desapercibidas. Esta es precisamente la clave, saber que genes son imprescindibles y cuáles no.

De hecho, la secuenciación del genoma humano perteneciente a personas de diferentes poblaciones de todo el mundo ha puesto de manifiesto que cualquiera de nosotros tenemos una media de 20 genes que no funcionan.

Por todo ello, los autores del trabajo consideran que su investigación abre las puertas a un “primer genotipo”. Es decir, a una especie de “Proyecto Genoma Perdido” en el que se lograría tener una base de datos de genes y variedades de genes perdidos.

Imagen: Minami Himemiya - Trabajo propio, CC BY-SA 3.0. Fuente: Wikimedia Commons.

¿Qué significa perder genes?

Tal y como explican los autores del estudio, el hecho de tener genes que no actúan, probablemente, sea debido a que son genes repetidos o genes que no tienen la necesidad de expresarse en el ambiente en el que vivimos.

En muchas ocasiones es una simple respuesta adaptativa a determinados cambios ambientales que rodean a los seres vivos y que se han producido de una forma repentina.

De hecho, la pérdida de genes se considera la responsable del origen de la especie humana. Y es que el hombre y el chimpancé comparten un porcentaje muy elevado de su genoma (98%).

Así, por ejemplo, se piensa que en este proceso evolutivo la pérdida de genes fue lo que indujo una reducción de la mandíbula primate. ¿Y cómo ha repercutido en los humanos este hecho? Concretamente permitió que el cráneo aumentase de volumen.

La pérdida de genes incluso hizo que nuestro sistema inmunológico mejorase de forma importante, permitiéndonos resistir determinados factores tóxicos que nos rodean. Así que la identificación de estos genes podría ayudar a identificar nuevos genes con posible interés terapéutico.

Para entender lo que supondría todo esto, vamos a remitirnos -al igual que los autores del trabajo- a un organismo, Oikopleura dioica. Este organismo fue  utilizado como modelo animal para estudiar la evolución, por parte del equipo de investigación dirigido por los autores de este estudio.

Oikopleura dioica, un modelo para esta investigación

Este es un organismo evolutivamente muy próximo a los vertebrados (entre los que nos incluimos). Presenta un patrón corporal parecido y comparte diversos órganos o estructuras homólogas. ¿Y por qué es un modelo de estudio? Concretamente porque ha perdido la mayor parte de los genes relacionados con el ácido retinoico. Y podemos pensar ¿y? ¿Para que es importante este ácido?

El desarrollo de estructuras tan importantes como el corazón o el cerebro, entre otros, depende concretamente del ácido retinoico. Si O. dioica ha perdido la mayor parte de los genes implicados en la síntesis de este ácido ¿cómo desarrolla corazón y cerebro, si para el resto de cordados es imprescindible? Estos investigadores esperan poder aportar más datos sobre ello en posteriores trabajos.

Así pues, y definitivamente, descubrir cuáles son los genes perdidos y la ruta que los une, demuestra experimentalmente que identificar estos grupos de genes constituyen una herramienta útil para identificar genes funcionalmente relacionados.

Referencia bibliográfica:
Albalat R y Cañestro C. Evolution by gene loss. Nature Reviews Genetics (2016). DOI: 10.1038/nrg.2016.39.

Fuente artículo: http://www.tendencias21.net/Se-abre-la-puerta-al-mapa-del-genoma-perdido_a43037.html

Comparte este contenido:

Identifican el primer organismo eucariota sin mitocondrias capaz de vivir sin oxígeno

27 de julio de 2016 / Por: Anabel Paramá Díaz / Fuente: http://www.tendencias21.net

El hallazgo cuestiona una de las bases más importantes de la biología

Un grupo multidisciplinar de investigadores ha identificado el primer organismo eucariota sin mitocondrias capaz de vivir en ambientes carentes de oxígeno. El hallazgo, fruto de la evolución, pone en cuestión una de las bases más importantes de la biología. Por Anabel Paramá.

En el colegio nos han enseñado las diferencias entre célula procariota y ecuariota. Entre ellas, nos dijeron siempre que las primeras carecen de mitocondrias mientras que las segundas sí las presentan. Las mitocondrias son orgánulos necesarios para la supervivencia de las células eucariotas.

Ahora bien ¿y si realmente esto no es así? ¿Y si existen eucariotas que sobreviven perfectamente, pero sin mitocondrias? ¿Supondría este hecho alguna modificación clave a nivel evolutivo?

Un equipo multidisciplinar de investigadores ha descubierto por primera vez un organismo eucariota capaz de vivir sin mitocondrias ni restos de ningún orgánulo que se asemejen a ellas.

Este organismo pertenece al género Monocercomonoides, un protozoo parásito que vive en el intestino de las chinchillas (roedor de los Andes); una zona donde no existe oxígeno.

La presencia de mitocondrias en organismos eucariotas es uno de los paradigmas de la Biología. Estos organúlos se caracterizan porque poseen su propio genoma (denominado ADN mitocondrial) que es similar al de las bacterias. Un punto clave en este proceso.

Pues bien, el hallazgo realizado por un equipo de investigación, liderado por la bióloga Anna Karnkowska de la Universidad de Praga, ha provocado que este paradigma sea cuestionado. El estudio del genoma del parásito Monocercomonoides ha plasmado la ausencia total de genes codificantes de proteínas mitocondriales. Este hecho podría dar un vuelco al paradigma evolutivo existente en Biología y asumido por toda la comunidad científica durante mucho tiempo.

Por otro lado, el hallazgo nos lleva a pensar que nuestra rama en el árbol evolutivo podría ser más versátil de lo que los investigadores creían.

El origen de las mitocondrias

Para explicar el origen de las mitocondrias se propuso la teoría de la endosimbiosis que afirma que, en tiempos remotos, una célula procariota (bacteria), capaz de obtener energía mediante el uso de oxígeno como oxidante, se fusionó con otra célula procariota o eucariota primitiva.

Para producirse esta fusión, la célula procariota capaz de obtener energía, fue fagocitada (engullida) por otra célula primitiva, pero no fue digerida de forma inmediata, un proceso que ocurre con frecuencia.

Esto hizo ambos tipos de células lograran vivir en una relación de simbiosis permanente. La célula procariota fagocitada proporcionaba la energía a ambas, mientras que la otra última proporcionaba un medio estable y rico en nutrientes.

Este tipo de relación hizo que ambas se fusionaran como un único organismo. En este nuevo organismo la célula que había sido fagocitada y suministradora de energía pasaría a convertirse en la mitocondria. Serían nuestras futuras “centrales eléctricas”.

¿Imprescindibles para la vida?

Para comprender la magnitud de este hallazgo expliquemos un poco la importancia de la función de las mitocondrias para nuestra supervivencia celular.

Todas las células necesitan un continuo aporte de energía, obtener nutrientes del ambiente, moverse y reproducirse. En el caso de las células eucariotas, las responsables de la obtención de toda esta energía son las mitocondrias. Este es uno de los fundamentos de la Biología, es decir, las células eucariotas (como las humanas) poseen mitocondrias. Tras lo expuesto, parece que, básicamente, sin las mitocondrias las células no podrían sobrevivir.

El estudio, publicado en Current Biology, muestra lo contrario. El hallazgo de un organismo eucariota capaz de sobrevivir sin estos orgánulos, supuestamente tan imprescindibles, resulta ser una de las grandes revoluciones en el conocimiento. Este descubrimiento pondría en duda este paradigma biológico.

El primer organismo eucariota sin mitocondrias capaz de vivir en ambientes sin oxígeno fue encontrado en el intestino de chinchillas. Imagen: niko_smile. Fuente: Wikimedia Commons.

El primer organismo eucariota sin mitocondrias capaz de vivir en ambientes sin oxígeno fue encontrado en el intestino de chinchillas. Imagen: niko_smile. Fuente: Wikimedia Commons.

El microorganismo sin mitocondrias

La reducción al mínimo de las mitocondrias no es un proceso desconocido en la Biología. Existen diversas especies de organismos protozoos (eucariotas) adaptados a un estilo de vida anaeróbica y que, por tanto, carecen de mitocondrias.

Sin embargo, a cambio poseen una serie de restos o vestigios procedentes de estos orgánulos que realizan la función de respiración. Estos organismos, como Giardia, habitan lugares sin oxígeno.

Basándose en esta idea, el equipo de investigación de Anna Karnkowska decidió estudiar otro microorganismo eucariota candidato que también habita en ambientes anaeróbicos, el intestino de las chinchillas. Este es un microorganismo parásito que, como hemos dicho, pertenece al género Monocercomonoides.

El parásito vive en un hábitat donde las condiciones fisiológicas no son muy adecuadas. En él, los jugos digestivos y la bilis, para la realización de la digestión, segregan enzimas cuya función es degradar y donde el pH es ácido. Estas condiciones no facilitan la supervivencia de organismos vivos en el intestino. Sin embargo, no parecen afectar al microorganismo analizado.

Entonces, ¿cómo consigue este vivir bajo esas condiciones? Esto es, precisamente, lo que llamó la atención de los investigadores autores de este estudio inédito.

El resultado

Los investigadores secuenciaron el genoma de Monocercomonoides y comprobaron que este organismo carecía de todas las proteínas mitocondriales.

Por otro lado, en eucariotas existe una vía mitocondrial que se creía que estaba conservada en todos estos organismos. Esta vía es la encargada de sintetizar grupos de hierro-azufre, colaboradores esenciales de una amplia variedad de proteínas.

Pero en el Monocercomonoides esta vía parece haber sido sustituida por un sistema de movilización citosólico de sulfuro (SUF). Curiosamente, este tipo de sistemas son característicos de procariotas. Los procariotas, como sabemos, no tienen mitocondrias. Entonces, ¿cómo obtienen la energía?

En lugar de utilizar el oxígeno para la obtención de energía, tal y como emplean los eucariotas, utilizan sustancias inorgánicas como el azufre y el sulfuro, entre otros. Por ello, estos investigadores aportan la idea que se ha producido una transferencia lateral de genes a partir de estas bacterias. Es decir, “han tomado prestados” una serie de genes bacterianos que realizan la misma función.

Pero este no es el único obstáculo que Monocercomonoides ha sido capaz de solucionar. Un dato más es que, probablemente, estos organismos utilicen enzimas presentes en su citoplasma para degradar los alimentos, y así obtener la energía necesaria. Un proceso similar al que usan los procariotas (carentes de mitocondrias). Este tipo de actuaciones es lo que les ha permitido subsanar todos aquellos problemas que podrían surgir como consecuencia de la carencia de mitocondrias.

Teniendo en cuenta todos los datos aportados, en el contexto de la filogenia eucariota, el equipo de Karnkowska sugiere que Monocercomonoides no es un organismo que primitivamente carezca de mitocondrias sino que ha eliminado por completo el compartimento mitocondrial.

¿Qué supone este descubrimiento?

Este descubrimiento abre nuevos campos de estudio y nuevas preguntas, así como da a conocer que la vida eucariota es mucho más flexible de lo que se creía hasta a hora. Además, siembra la duda sobre la necesaria confirmación de si la eliminación de las mitocondrias es posterior a su presencia.

Los investigadores consideran que este es un descubrimiento de importancia fundamental, ya que ahora sabemos que los eucariotas pueden vivir sin ningún vestigio de las mitocondrias. Y, probablemente, existan otros casos similares que se desconocen actualmente.

No obstante, son conscientes de que es necesario realizar un análisis detallado mediante el empleo de la microscopía electrónica que permita confirmar definitivamente la ausencia de mitocondrias. En caso de confirmarse, la definición de organismo eucariota tendría que ser modificada.

Referencia bibliográfica:
Karnkowska A y col. A Eukaryote without a Mitochondrial Organelle. Current Biology (2016). DOI: 10.1016/j.cub.2016.03.053.

Fuente artículo: http://www.tendencias21.net/Identifican-el-primer-organismo-eucariota-sin-mitocondrias-capaz-de-vivir-sin-oxigeno_a42638.html

Comparte este contenido:
Page 1 of 2
1 2